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Or, in the original variable

z == Ising == (I — % ei") siny — %{213 sl 3vy 4 510 (39; ~— 1))

In the problem considered we could manage without the introduction of adjoint variables, since
the original system can be written immediately in Hamiltonian form.
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ON THE CORNER POINTS OF THE BOUNDARIES
OF REGIONS OF ATTAINABILITY

A.M. FORMAL'SKII

Some properties of the boundaries of the regions of attainability of linear

unsteady systems with a single control (perturbation) function that has
values on the segment are studied. It is established that for fairly small

tima intervals the houndaruv oF thae attainment racoinn has econical cornar
LAmMe LNDTeXVAaLS a8 DOUNRCAYY oL T8 atlalinment Yegailnl Nags onlcal oorner

points, edges and faces . The conditions for which the distance of the
conical corner points from the origin of coordinates is a maximum are
@stablished.

1. The regions of attainability of controllable (perturbable) systems were studied in
/1—8/ and elsewhere. The interest in investigating such regions is connected., for instance,
with the Bulgakov problem of the accumulation of perturbations /9/. The method of attainment
regions was used when constructing optimal-control theory /2—4/ and the theory of games /5,
6/. Their determination is important in many applications. In /10, 11/ it was proposed to
evaluate these regions by using ellipsoids. In the present paper certain statements are
proved on the presence or absence of corner points ("tapered” points /5/) on the boundary of

+he artainment regions, on the propertiss of such pointsg, and on theiy extremal properties
the atiainment regions, on TNhe prope pointes, an on WhelX exiremal properiies.

The presence of corner points is indicative of the limited nature of the appreoach in which
the boundaries are approximated by smooth surfaces, The question of the extremal properties
of boundary points arises when determining the control that removes the system farthest away

from the origin of coordinates.
Consider a system defined by the linear matrix differential

deldt = A (Yz + b (Hhu, jul)<t (1.1}

where z,4 {f) and b {l) are matrices of the type {n X 1), (m X n) and (r X 1), respectively,
and u{f) is the control (perturbing} function bounded in absociute value and piecewise con-
tinuous; the set of such functions will be denoted by L. We will assume that the matrix ele-
ments 4 {f) and b () have continuous derivatives up to the (n — 1)-th order for all t.

The solution of system (1.1} at the instant {=T when z () =0 is described by the
integral
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where 6 (f) is the fundamental matrix of solutions of the uniform (u (t) = 0) system (1.1).

Consider, in the phase space X, the attainment region

Qe I = {z{T: v () EQ
which represents the manifold of those and only those peints of space X which can be reached
by system {l.l) during the time T — {,, moving from the origin of coordinates under the con-
trol u (f) & Q. The manifold Q (t, T) is convex, closed and symmetric about the origin of co-
ordinates /1-8/.

We denote by II (1) the supporting hypersurface of the manifold @ (i, I) orthogonal to
the vector n (Fig.l), and by d{n) the distance between the origin of coordinates and the
plane II{y) (and the plane II (—n)). We assume the vector to be everywhere unitary, i.e.
neE S, where §={i: || =1}. Those points and only those points x belong to themanifold

@ (%o, T) whose coordinates satisfy the inequalities

Inz|<dm), Vne&s (1.3)
where 7 is the row-matrix (1 X m). For the distance d(n) we have the expression /8/
d == m T =
V! ne-g) m ey n(m:{ D (1.4)
T
max S WMT) () b{r)u(r)dr =
/ 'q u('!)eﬂ-‘. .
sgn(T —to) § |0 (T) 673 (1) b (x) | dn
ey, t
The control u (¥} that gives a maximum value to the func-
- datn) tional in (1.4) has the form
I
() =um)=sgnne (N EbE (T — )]} (L.5)
We will assume that on any segment of the axis — o0 < T <
"(fi) oo. we have
7 PO T D=0 MbMED VS, VI (1.6)
Fig.l It was shown in /4/ that inequality {1.6) holds, if for all t
rank [ L (@), ..., L ()] =n .7

(l,(z)==b(:), L (t) = A (O s (¢ —f’di;l—, k=2,..., n)

Under condition (1.7) the function % {(n, T, 1) over any segment has only a finite number
of zercs /4/.

This condition is used below to prove a number of statements. For systems with constant
matrices 4 and b the inequality (1.6) is equivalent to the Kalman controllability property
/12/.

Under condition (1.6) the maximizing contrcl (1.5) is unigue. Hence the boundary point

z (T) at which the hyperplane II{(n) touches the manifeld @ (i, J) is alsc unique (this impl-
ies the strict convexity of @ (4, T)) and is given by the formula
T
z(T)= S 8Ty (1) b(r)sgn[nB(TY 01 (x) b (1) (T —ta)] dx {1.8)

e

which is the parametric equation (parameter n & S) of the boundary T (¢, T) of the region of
Q (2o, T). It can be considered as the mapping of the sphere § onto the boundary

T F)=D (5,4, T 1.9

The strict convexist of the manifold @ (f,, T} for any i, T is equivalent to the unique~
ness of mapping (1.9). 1If the boundary T (t,, T} was everywhere smooth, i.e. at each point
z&T (th ) a unique support (that is also tangent) hyperplane II (n) of manifold Q@ T)
existed, then the mapping

8 =0T (1, T (1.10)

which is the inverse of mapping (1.9), would also be unigue. But the boundary T . T) is
generally not everywhere smooth (which makes mapping (1.10) nonunique). This circumstance is
the subject of further investigation.

2. The cormer points of the boundary. we introduce the following definitions.
Definition 1, We shall call the point z e T (f,, T) the corner peint of the boundary, if
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that peint is contained by at least two different (n 3= n{®) supporting hyperplanes 1l (yi)
and II (W™ of the manifold Q (8, T).

Let z& T (4, T) be a corner point and z< I (™), I (4®). Then, owing to the uniqueness
of the maximizing functions (1.5)

™D =um®, 1), Ve, T) (2.1)
oo sgn [n®8 (T) 872 (v) b (1)) = sgn [1®9 (T) ! (x) b (1))
Vi (5, T) (2.2)
We will rewrite Eq. (2.2) for constant matrices 4 and b
sgn (n®edlh) = ggn (nWedld), VE=(0, T — i) (2.3)

Let us assume now that the converse is true, i.e. that two different vectors 3V, q® & §
exist such that identity (2.2) holds, which means that (2.1) also holds. Then, two supporting
hyperplanes II (n®) and II (n®) exist that contain one and the same point =z < T (f, T).

Thus the following statement holds,

Lemma l. For a corner point to exist on the boundary I {4, T) it is necessary and suffic-
ient that at least two different vectors n, n® &= § exist, for which identity (2.2) holds.

Lemma 2. For the point z& T (, I) corresponding to the vector w» =S to be a smooth
point of the boundary T (t, ) (not a corner point) it is necessary and sufficient that a
neighbourhocd S® & § of the vector 5 exists such that for any vector n® <= §W identity
(2.2) does not hold.

By analyzing the conditions of identities (2.2) {or (2.3)) it is possible to obtain the
conditions under which the boundary of the attainment region has, or has not, corner points.

Examples. Consider the following system of differential eguations
o' = o2y, (mo— pt) 2y = u (2.4)
(m, w == const >0, 0 < ¢ < m/p)
On certain assumptions system (2.4} defines a controllable (perturbed} motion of a solid
of variable mass around its axis of symmetry.
For second-order systems the vector mn{m,n) may be represented in the form

m=cosp, N, =3singp (0<¢<2m) (2.5)
Then

10(7)67(3)6 (1) = (T —) cos @ +-sing) L (2.6)

When O0<g<n—arctg? (we assume that ¢, =0) the function (2.6) is positive, and when
a9 ~arctg T it is negative for all v« (0, 7). Consequently, for any T< m/p a complete
range of values of ¢ exists {which means also a range of vectors ne S), such that for any
two different values of ¢ from that range, the identity (2.2) holds. Hence the boundary of
the attainment region of system (2.4) for any T < m/p has two corner points. They are ob-
tained by substituting into formula (1.2) the functions

u(t)=+1 (2.7)

and cnly them. This result is well known in the literature u=90.
Consider a second-order system with complex eigenvalues

2 = xy, 2y = ey — 28,0 (| << 1) (2.8)
Taking into account the notation (2.5) when e=0 we obtain
1e%h = sin (£ + ) (2.9)

Let t,=0 and 7T<=® Then for 0 ¢o<a—7T the function (2.9} is positive, and for
a< o< 2~ T it is negative for all §e (0, 7). Hence, when I<n identity (2.3) holds for
any two different values of ¢ from a certain range. When 7>=a the identity (2.3)canobviou-

sly not hold for any vectors 7™, n® (and angles o™, ¢*). Thus, when T <= the boundary of
attainment of system (2.8) (in the case of e=0) has two corner points, and when T3> = it is
averywhere smooth. This result can also be obtained by direct construction (analytically) of
the region ¢@(0,7). It can be shown that when e=£0, the boundary T (0, 7} has two angular
points when 7 < alw, and when T>a/e it is smooth (o= ¥1— &

Definition 2. We will call the corner point of the boundary T {f, T), which corres-
ponds to the {n — 1)-dimensional subset of sphere §, the conical corner point.

This is natural, since the envelope of the supporting hypersurfaces of the region @ (I, T)
containing such a point is a conical surface. In second-order systems the corner points can
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obviously only be conical (Fig.l).
Under condition (1.7)

b)ys=0 L{H+=0 (2.10)}
for any — oo < i< ®. In a linear controllable system with constant coefficients, of course,
b= 0.

Lemma 3. The conical corner points of the boundary I (f, T) (if they exist) are obtain-
ed by substituting the functions (2.7), and only them, inte (1.2).

T
eM=={oMmer@b@adr

123

{(2.11)

We prove this by reductio ad absurdum. Let a conical corner point be obtained by us-
ing the control with switching at a certain te (f, T). Then, by definition 2

n(netmbE =20 (2.12)

for all vectors 5 from some (»— 1) -dimensional subset of the sphere S. But this is imposs-
ible, since the equality (2.1) isolates on an {n- 1)-dimensional sphere § a manifold of dimen-
sionality (n~—2) (8 (7)8-1(x) b{1)+ 0, consequent on the nondegeneracy of the matrix #&() and in-
equality (2.10).

Lemma 3 implies that on the boundary T (i, I') there are two conical ocorner points or none
(see system (2.8) and Theorem 3).

Since the function ¢ (n,7T, 1) depends continuously on the vector v, from Lemma 3 we have
the following lemma.

Lemma 4. For conical points to exist on the boundary T (f, T) it is necessary and suf-
ficient that a vector 1 exists such that

BT WbE) >0, Vie (t, T) (2.13)
We will show that for any f, quantity J¥ exists such that for all T & (i, T') the set
Ser=ESigPp MM >0, Vs (i, T)

is nonempty and moreover (n — i)-dimensional.

In fact,we select the vector y so that ¢ {4, &,
ty) = nb (f,) > 0 (we recall that b (t,) 9= 0). The
function ¢ (v, T, ) depends continucusly on the
arguments T and 7,2 I’ exists such that for all
7,1 (ty T') the inequality (2.13} holds. Obviou-
sly, this inequality holds in some neighbourhood
of the vector non the {(n — 1)-dimensional sphere
S. We denote by —S,, r the part of the sphere §

)
{
(2

that is symmetric to the set §; r with respect

to the origin of coordinates. The mapping (1.8)
or (1.9) sets in correspondence to the sets S ¢

and —8;, r two conical corner points of the bound-

Fig.2

axy T (t,, T) which are svmmetric with respect to
the origin of coordinates (Figs.l and 2; Fig.2 shows half of the attainment region in three-
dimensional space).

Thus we have the following theorem.

Theorem 1. For any t;a I' exists such that the boundary T' (tp. T') has exactly two conical
gorner points for every I & (4, T).
The fundamental matrix eA: of system (1.1) with constant coefficients may be written
in the form /13/
r Px—1
eti= 3 3 ayehd’
ke=l =0

where M (k=1,...,7) are various eigenvalues of the matrix 4 of multiplicity p,, and oy
are constant matrices. Then

r Pp=1
Nedlb = 3 3 noybe™iE! (2.14)
k=1 lmp
Let us assume that among the numbers Ay (k= 1,...,r) there is at least one real number,

for instance A,. Of the n gquantities na,b we equate to zero n - {1 of them
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noyd = 0

(lzi,...,p,,—-l;kmi
530,1,...,pk—-i;k==2,...,r)

Only the quantity ma,b remains. Under condition (1.6) Egs.{2.15) are linearly indepen-
dent and have as their solution only two unit vectors n® and —mn°. Substitutions of the vector
7° into Eqg. (2.14) gives
N°eA%) == N’ obeMe (2.16)

The function (2.16) retains its sign along the whole axis -—oo < § < o0 {on substituting
the vector —v° its sign changes). Hence using Lemma 4, we have the following theorem.

Theorem 2. If the matrices A and b of system (1.l) are constant and matrix 4 has at
least onTe real eigenvalue, the boundary T (f,, I) has exactly two conical corner points for
all &, T.

Let us assume now that all the eigenvalues of system (l.1l) with constant coefficients are
complex. Then for any vector ywe& § a quantity 7T — ¢, exists such that in the interval (0,
T — to) the function (2.14) has at least one zero. In turn, the vector n has on the sphere
§ a neighbourhood such that for each vector, the function {2.14) in the same interval has at
least one zero. Selecting on the sphere § a finite covering we can ascertain the existence of
a quantity §’'such that in the interval (0, &'), function (2.14) has a least one zerc for each
vector mne&s §. By Lemma 4 we can make the following statement.

Theorem 3. If the matrices A and b of system (1.l1) are constant and matrix 4 has only
complex eigenvalues, then a value of §'>> ( exists such that the boundary T'(t, T) has no
conical corner points for |T — ¢, | > ¢,

Unlike second-order systems, the corner peints of third-order and higher systems may not
only be conical.

Under condition (1.7) a vector {° exists (hence for a given T also a vector 1° = 671 (T) {°),

such that
P M°, T, fy) = £°071 (2) (tg) =0
DT k) 129 1) L 1) > 0

The quantity T may be selected to be so close to !y that for the vector «° =8"1(I){°
the inequality ¢ (n°, T, 1) >0 holds for all t& (¢, ). The vector W’ = §, r lies on the
boundary of the set 8 r. It is clear that on the sphere S a neighbourhocod of the point 1n°

exists for whose every point 1 the function ¢ (n, T, t) has not more than one zero in the in-
terval (&, T). Then for any t fairly close to f,, in that neighbourhood a vector (¥ can be

found such that the function % (n®, T, 1) in the interval (f, ') vanishes only at the point 1
{see Eq.(2.12)}. The function ¥ (n?, T, 1} in that zero of 7 changes its sign from minus to
plus. Equation (2.12) defines for fixed T on the sphere § an (n — 2)-dimensional set, which
for n>3 is nonempty. In that set a neighbourhood of the vector n¥ exists in which the
function % (n, 7,7) in the interval (t,, ) has a zero at the fixed point T and only at that
point. Obviously the control (1.5) corresponds to the vectors 7 from that neighbourhood with
one instant t of change of sign, and on the boundary I' (4, I') a corner peint that is conical.
Taking the values of v from {, to ¢, -+ ¢, wherelelis a fairly small number, we obtain a set
of such corner points which can be called the edge /7/. The edge constructed above begins at
the conical corner point (when < =1{,). Unlike the conical corner points which represent
zero dimensional sets in space X, the edges are one~dimensional sets of corner points.

Definition 3. We shall call the corner point of the boundary I' (i, I) which corresponds
to an (n — 2)-dimensional subset of the sphere §, a point of one-dimensional edge.
The above reasoning contains the proof of the following theorem.

Theorem 4. Foxr every &, a I’ exaists such that the boundary T (%, T} has two conical
corner points on the boundary T & (¢, 7”), and from each such point at least one edge begins.
The following theorem can be proved.

Theorem 5. For any f, a I’ exists such that for every T & (f, I’) there are on the bound-
ary T (t,, T) two conical coxner points that are connected to one another by two edges.

The edges connect conical corner points when for each 1& (ty, I} a vector n exists such
that the function ¢ (4, T, 1) =0 at only one point of the interval (ty, T). To obtain edges it
is necessary to substitute into Eq.{1.2) all possible functions u (t) that in one time interval
have a value 1 and in another —1. The unique instant Tt when the sign of these functions
changes encompasses all values from the interval (4, I).

In third-order systems the singularities of the boundary T (4, I) are exhausted by the
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presence of conical corner points and one-dimensional edges (Fig.2). When 1T —1] is swall
the attainment region in third-order systems is like a plum stone. This similarity is maint-
ained for all T — i, if (1.1) is a stationary system and all three eigenvalues of the matrix
A are real /7/.
in fourth-order systems the boundary I' (f,, 7} may have two-dimensional "edges”™, whose

points correspond to the one-~dimensional subset of the sphere S, and n~th order systems may
have up to (n — 2)-dimensional edges, whose points correspond to a cne-dimensional subset of
the sphere S.

Theorem 6. For any t, a I’ exists such that the boundary T {f, T) has for any T & (&, 7}
two conical corxner points and, also, corner points that form one-, two-, three-, and ..., {n —
2) ~dimensional edges.

Let us prove this theorem. Under condition {1.7) a vector {°® exists (for a given T this
vector is used to Qetermine the vector 9° = 0 (7){) such that

f@{ﬁhovtg) P P N T U 1 5o Lo 4\
..—--E;‘,-—-—--zgv o) dieg gl = sy F PIR £

COORT ) o 1958 1) Ly 1) > O
Ugk<n—2 P=0(N1)

The guantity T can be selected to be so close to ¢, that for the vector % = 87%(F) [ for
all 7e= (i, I') the inequality ¥ (ﬂ° I,%v) >>0 holds. It can be ascertained that on the sphere
S a neighbourhood of the vector 0’ exists, for each point of which the function ¢ q, T, %} has
in the interval ({(f; 7) not more that k zeros. Then for any set of numbers T, ..., % fairly
close to #, a vector xi can be found in that neighbourhood such that the function ¢ (9, T, 1)
has in the interval (g, ) exactly X zeros of =,,... 7.

NI I (x) b)) =0 (i=1,....k (2.17)

Equation {2.17) Gefines for fixed %, ...,% on the sphere § an (B — k — i)-dimensional
set. In that set a neighbourhood of the vector ni¥ exists where the function $ (1, 7,1} van-
ishes in the interval (t,, T) at fixed points %...., T and only at these points. The con-
trol (1.5} obviously corresponds to the vectors in that neighbourhood, with switching instanc-

es Ty, - . ., Ty and at the boundary I'(f,, ) a corner point corresponds to it. Taking the
instants %, ..., T, we obtain a set of corner peints that form a k~dimensional edge. The
number k may have any value from unity to n — 2. This proves Theorem 6, which generalizes

Theorems 1 and 4.
Theorem & was proved in /7/ for all T — ¢, in the case when the matrices 4 and b are
£ d+he marriv 4 avs vo

-}
5 Ve WS ARAWA aA &3 AXT

3. Extremal po ints of the boundary. wWe introduce the following definition.

™ m -~ s s
i 4]

befinition 4. The point {vectoxr) z & T {i,, is called extremal, if on the boundary T (i, T)
it has a neighbourhood al e points of which dlstant from the origin of coordinates by not
moxe {not less) than the point x.

For point z& T {§, ) to be extremal, the existence of a supporting hyperplane II{n) is
necessary. That hyperplane passes through the point x such that

&

v o= 2%/ 2l {(3.1)
% EARE R (.40

where ||z}l is the norm of the vector x, and the asterisk denotes transposition. From Egs. (1.8)
and (3.1) it follows that the extremal vectors z (I) satisfy the condition

T
z(T)= S (I8 (1) b(x)sgune*(T) ()02 (3) b (3} (T — to)] dn (3.2)

Equation (3.2) may be treated as follows: the extremal vector z& I (¢, T)is an eigen-
vector of transformation {1.8) or (1.8) {apart from the normalizing multiplier).

If a conical corner point z &I (f, T}, is extremal, it is distant from the origin of co-
ordinates by not less than the neighbouring points; this follows from the convexity of the
attainment region @ (I, T}. Bence we shall consider the conical corner peint whose distance
£rom the origin of coordinates is a maximum to be extremal. For the conical corner point

ze T {t, I} to be the maximum distance from the origin of coordinates it is necessary and
sufficient that it is possible to draw through that point x a supporting hyperplane orthogonal
to the vector x.

Theorem 7. For the conical corner point of boundary I'(f,, ) to be at the maximum distance
from the origin of coordinates is necessary that
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T
sgn (T — to) S P @ (e (DN @@ dr >0
fe
VECS (b, T)
and sufficient that

sgn(r—to>Sb*(r)(e**u»-e'(r)e(r)e-l@)bmdc>o (3.3)
i, T)

To prove the theorem it is sufficient to recall Lemmas 3 (Eg.{(2.11)) and 4, and Eq. (3.1).

According to Lemma 4, the strict inequality (3.3) is the sufficient condition for conical
corner peints to be present. Hence by Theorem 7 the strict inequality (3.3) is the sufficient
condition for conical corner points that are at the maximum distance from the origin of co-
ordinates to exist on the boundary T (4, 7).

For constant matrices 4 and b, inequality (3.3) takes the form

Tts
s (T —tg) § breseatsdr>0, VB (0,7 —to)
0

The integrand function in (3.3) (let us denote it by W (t, §)) continucusly depends on
both of its arguments. Under condition (2.10) W(r, 1) >0 for all — oo << T< 0. Hence tak-
ing into account Theorem 1, we obtain the following statement.

Theorem 8. For every t, a T’ exists such that the boundary T (4, T) for every Te= {8, T)
has two conical corner points that are at the maximum distance from the origin of coordinates.
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