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Or, in the original variable 

In the problem considered we could manage without the introduction of adjoint variables, since 
the original system can be written immediately in Hamiltonian farm. 
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A.M. FOEMAL'SKII 

Some properties of the boundaries of the regions of attainabiiity of linear 
unsteady systems with a single control {perturbation) function that has 
values on the segment are studied. It is established that for fairlysmall 
time intervals the boundary of the attainment region has conical corner 
points, edges endfaces. The conditions for which the distance of the 
conical corner points from the origin of coordinates is a maximum are 
established. 

1. The regions of attainability of controllable (perturbable) systems were studied in 
/l-8/ and elsewhere. The interest in investigating such reqions is corU'bscted, for instance, 

with the Bulgakov problem of the accumulation of perturbations /9/. The method of attainment 
regions was used when constructing optimal-control theory /2-4/ end the theory of games /5, 

6/. Their determination is important in many applications. In /lo, lli it was proposed to 
evaluate these regions by using ellipsoids. In the Present paper certain statements are 
proved on the presence or absence of corner points ["tapered" points /5/t on the boundary of 
the attainment regions, on the properties of such points, and on their extremal properties. 
The presence of corner points is indicative of the limited nature of the approach in which 
the boundaries are approximated by smooth surfaces. The guestion of the extremal Properties 
of boundary points arises when determining the control that removes the system farthest away 

from the origin of coordinates. 
Consider a system defined by the linear matrix differential 

dx/& = A (4 2 + 6 (4 a, { u V) I < i i1.l.i 

where x, A (t) and b(t) are matrices of the type (n x i), (a x la) and (a X 1) I respectively, 
and aft) is the control fperturbing) function bounded in ebsoiute value and piecewise con- 
tinuous; the set of such functions will be denoted by Q. We will assume that the matrix ele- 
ments A (t) and 6 (t) have continuous derivatives up to the (n-I)-th order for all t. 

The solution of system (1.1) at the instant t = T when z&,f =O is described by the 
integral 

I(T)~j8(T)8-~~T)b(r)u~T)d+ (1.2) 
t. 
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where 0 (t) is the fundamental matrix of solutions of the uniform (u (t)r= 0) system Il.1). 
Connsider * in the phase space X, the attainment region 

Q (te, T) = Ez fTf: tb (t) E Q) 

which represents the manifold of those and only those points of space X which can be reached 
by system (1.1) during the time T - tp, moving from the origin of coordinates under the con- 
trol u (t)E 51. The manifold Q(t,, T) is oonvex, closed and synuaetric about the origin of co- 
ordinates /l-8/. 

We denote by II (9) the supporting hypersurface of the manifold Q (t,, T) orthogonal to 
the vector 11 (Fig-l), and by d(q) the distance between the origin of coordinates and the 
plane fI [nri) fand the plane n (-n)). We assume the vector to be everywhere unitary, i.e. 
r E S, where 8 = (n: 11 q 1 = 1). Those points and only those points x belong to themanifold 
Q ($0. T) whose coordinates satisfy the inequalities 

I w I < d h), Vrl E S Cl.31 

where ?J is the row-matrix (1 X n). FQ?Z the distance d(n) we have the expression /8/ 

Fig. 1 

The control u (7) that gives 
tional in Cl.42 has the form 

a maximum value to the 

fl.41 

func- 

u (“4 = tf h, z) a= sgn [qti (T) 0-l (7) & (r) (T - to) I (1.51 

We will assume that on any segment of the axis - CIO (r< 
co-we have 

9 @, T, rf = ~8 (2') 0-l (2) b (7) s+ 0, Vfl E S, VT (l-6) 

Ii was &OWFI in /4/ that inequality f1,61 holds, if for all t 

rank /I 1% (t)t - . ., t& (t) 1 = n (1.7) 

Under condition (1.7) the function +I (n, T,$ over any segment has only a finite number 
of zeros f4/. 

This condition is used below to prove a number of statements. For systems with constant 
matrices A and b the inequality (1.6) is equivalent to the Kalman controllability property 
/12/. 

Under condition (1.6) the maximizing control (1.5) is unique. Hence the boundary point 
z (T) at which the hyperplane n(q) touches the manifold Q&T) is also unique (this impl- 

ies the strict convexity of Q(t,,+ T)) and is given by the formula 

which is the parametric equation (parameter T]ES) of the boundary r(t,, T) of the region of 
Q (&,T). Pt can be considered as the mapping of the sphere S onto the boundary 

r Go, Pf = Q, @% $09 J-1 (1.9) 
The strict convexist of the manifold Q(t,,T) for any t*, T is equivalent to the unique- 

ness of mapping (l-9). If the boundary r&T) was everywhere smooth, i.a. at each point 
sEr (&,, T) a unique support (that is also tangent) hyperplane n(q) of manifold Q (to, Tl 
existed, then the mapping 

S = 0-l [r (to, T)l (1.10) 

which is the inverse of mapping (1.91, woufd also be unique. But tie boundary r (i*+ T) is 
generally not everywhere smooth <which makes mapping (1,101 nonunique). This circumstance is 
the subject of further investigation. 

2. The comer paints of the boundary. We introduce the following definitions. 

Definition 1. We shaL1 call the point z E r (to. 2') the corner point of the boundary, if 
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that 
and 

point is contained by at least two different (q(l)+ q@)) supporting hyperplanes II ($11 

n (W of the manifold Q (to, T). 
Let z E I' (&,, 2') ba a corner point and 5 E n (q(')), If (q(l)). Then, owing to the uniqueness 

of the maximizing functions (1.5) 

i.e. 

24 (q(l), 7) = u (q(Z)* 7), VT E (to, T) 12.1) 

sgn [q1"'8 (T) W' (z) b (7)l = sgn [rp0 (T) 0-1 (7) b (7)] 

v7 E 00, T) 

We will rewrite Eq. (2.2) for constant matrices A and b 

(2.2) 

sgn #se%) = sgn (~(*)eA~b), V$ E (0, T - to) (2.3) 

Let us assume now that the converse is true, i.e. that two different vectors q('),q(') E S 
exist such that identity (2,2) holds, which means that (2.1) also holds. Then, two supporting 
hyperplanes II (I$')) and II (q(')) exist that contain one and the same point z E r (to, T). 

Thus the following statement holds. 

,Wmnal. For a corner point to exist on the boundary r (&,, 2') it is necessary and suffic- 
ient that at least two dSfferent vectors q@), q@fE s exist, for which identity (2.2) holds, 

Lemma 2. For the point xEr(t,,, T) corresponding to the vector q(l) E S to be a smooth 
point of the boundary I' (to, T) (not a corner point) it is necessary pnd sufficient that a 
neighbourhorid S(')E S of the vector q(l) exists such that for any vector q(*)E SW identity 
(2.2) does not hold. 

By analyzing the conditions of identities (2.2) (or (2.3)) it is possible to obtain the 
conditions under which the boundary of the attainment region has, or has not, corner points. 

Examples. Consider the following system of differential equations 
21' = .z*, (m - jU) z*' = u (2.4) 

(m,y=conSt>0,0~‘<</~) 
On certain assumptions system (2.4) defines a controllable (perturbed) motion ofasolid 

of variable mass around its axis of symmetry. 
For second-order systems the vector q(q~,q~) may be represented in the form 

qt=eoscp,q,=sintp (O<q,<Znf (2.5) 

~e(T)e-~(r)b(r)=[(T-T)coscp+sintp] 1 
m -_Irr 

(2.6) 

When O<tp<x--8rctgT (we assume that r,=O) the function (2.6) is positive, and when 

nd992n- arc&z' it is negative for all rE(O, T). Consequently, fox any T<mf~ a complete 
range of values of p exist.s [which means also a range of vectors rle.9, such that for any 
two different values of Q from that range, the identity (2.2) holds. Aence the boundary of 
the attainment region of system (2.4) for any T< m/p has two corner points. They are ob- 
tained by substituting into formula (1.2) the functions 

U (?) = t_ 1 (2.7) 

and only them. This result is well known in the literature p= 0. 
Consider a second-order system with complex eigenvalues 

q. = X,, z,' =z - 21 - Zez, + u (I E I < i) f2.8) 

Taking into account the notation (2.5) when e==O we obtain 

q&b = sin(5 + cp) (2.9) 

Let t,=O and T< x. Then for O<q<x- T the function (2.9) is positive, and for 

=<94F*-- T it is negative for all ee(O, Tf. Hence, when T<n identity (2.3) holds for 
any two different values of q from a certain range. when f>s the identity (2.3)canobviou- 

sly not hold for any vectors @', @) (and angles tp"', up"'). Thus, when T<n the boundary of 

attainment of system (2.8) (in the case of e-0) has two corner points, and when T&n it is 

everywhere smooth. This result can also be obtained by direct construction (analytically) of 
the region Q(0, T). It can be shown that when ES; 0, the boundary l'(0, I') has two angular 

points when T<dco, and when T>niw it is smooth (o= vi). 

Definition 2. we will call the corner point of the boundary r (to+ T), which corres- 

ponds to the (n - l)-dimensional subset of sphere s, the conical corner point. 

This is natural! since the envelope of the supporting hypersurfaces of the region Q(t,, T) 
containing such a pornt is a conical surface. In second-order systems the corner points can 
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obviously only be conical (Fig.1). 
Under condition (1.7) 

b (1) Js; 0 (h (f) f 0) (2.10) 

for any -w<t<w. In a linear controllable system with constant coefficients, of course, 

b # 0. 

Lemma 3. The conical corner points of the boundary r&T) (if they exist) are obtain- 
ed by substituting the functions f2.7), and only them, into (1.2). 

We prove this by reductio ad absurdum. Let a conical corner point be obtained by us- 

ing the control with switching at a certain TE (to,T). Then, by definition 2 

$i((T)6-'(7)b(2)=0 (2.12) 

for all vectors n from some (R-Q-dimensional subset of the sphere 5. 3ut this is imposs- 
ible, since the equality (2.1) isolates on an (a--- i)-dimensional sphere S a manifold of dimen- 
sionality (n- 2) (@(T)8-1(~)t)(r)#Or consequent on the nondegeneracy of the matrix e(t) and in- 
equality (2.10). 

Lemma 3 implies thatonthe boundary r(t,, T) there are two conical oorner points or none 
(see system (2.8) and Theorem 3). 

Since the function g(q,T,~) depends continuously on the vector ~j, from Lemma 3 we have 
the following lemma. 

Lemma 4. For conical points to exist on the boundary f (t,, T) it is necessary and suf- 
ficient that a vector q exists such that 

qe (T) 8-l (7) b (2) > 0, ‘trl: E (to, T) (2.13) 

We will show that for any to quantity T’ exists such that for all TE (to, T’) the set 

S &, T = fq E St $3 (2’) 8-l (7) b (r) > 0, tr, E (k,, T)l 

is nonempty and moreover (n - 1) -dimensional. 
Infact,we select the vector V) so that 9 h? to* 
to) = qb (to) > 0 (we recall that b (to) # 0). The 
function $I(Q T,r) depends continuously on the 
arguments T and ~,a T'exists such that for all 
T,z~ft,,T’) the inequality (2.13) holds. Obviou- 
sly, this inequality holds in some neighbourhood 
of the vector q on the (n- If-dimensional sphere 
S. We denote by -St.,~the part of the sphere S 

that is symmetric to the set So,* with respect 

to the origin of coordinates. The mapping (1.8) 
or (1.9) sets in correspondence to the sets St.,= 

and -&,T two conical corner points of the bound- 

ary r(t,, T) which are svmmetric with respect to 
the origin of coordinates (Figs.1 and 2; Fig.2 shows half of the attainment region in three- 
dimensional space). 

Thus we have the following theorem. 

Theorem 1. For any to a T', exists such that the boundary r(t,, T) has exactly two conical 
porner points for every T=(t,, T’). 

The fundamental matrix &% of system (1.1) with constant coefficients may be written 
in the form /13/ 

, Pk-1 

eAe=zz Iz ak+%' 

where kk (k = 1,. . ., r) are various eigenvalues of the matrix A of multiplicity pa and akl 
are constant matrices. Then 

(2.14) 

Let us assume that among the numbers h, (k = 1,..., r) there is at least one real number, 
for instance h,. Of the n quantities qak,b we equate to zero n - 1 of them 
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qaktb = 0 ;?.LJ) 

( 

l=&...,p,-f;k=1 

t=0,1 I..., pk---l;k=2 *...I r 

Only the quantity qa,,b remains. Under condition (1.6) Eqs.(2.15) are linearly indepen- 
dent and have as their solution only two Unit vectors q0 and -$. Substitutions of thevector 
q0 into Eq.(2.14) gives 

q'e% = rfa,abeW (2.163 

The function (2.16) retains its sign along the whole axis --oo (E< CO (on substituting 
the vector -@its sign changes). Hence using Lemma 4, we have the following theorem. 

Theorem 2. If the matrices A and b of system (1.1) are constant and matrix A has at 
least one real eigenvalue, the boundary I'@,,, T) has exactly two conical corner points for 
all to, T. 

Let Us assume now that all the eigenvalues of system (1.1) with constant coefficientsare 
complex. Then for any vector q~ S a quantity T - to exists such that in the interval (0, 

T - &) the function (2.14) has at least one zero. In turn, the vector q has on the sphere 
S a neighbourhood such that for each vector, the function (2,141 in the same interval has at 
least one zero. Selecting on the sphere S a finite covering we can ascertain the existenceof 
a quantity $'such that in the interval (O,E’), function (2.14) has a least one zexo for each 
vector q= S. By Lemma 4 we can make the following statement. 

Theorem 3. If the matrices A and b of system (1.11 are constant and matrix A has only 
complex eigenvalues, then a value of E'>O exists such that the boundary l? @,, T) has no 
conical corner points for 1 T-t, I> 5'. 

Unlike second-order systems, the corner points of third-order and higher systems may not 
only be conical. 

Under condition (1.7) a vector 5" exists (hence for a given T also a vector q0 = 0-* (T) r), 
such that 

II, (q', T, to) = Ipe-1 (to) 2, (to) = 0 

4’W’. T. ‘62. 
dr - pe-l (to) la (to) > 0 

The quantity T may be selected to be so close to te that for the vector TjQ = 0-i (T) 5 
the inequality $(q", T, r)> 0 holds for all r!? (t,, T). The vector qO~ S,,, lies on the 
boundary of the set S1,,T* It is clear that on the sphere S a neighbourhood of the point q0 

exists for whose every point qthe function $ (q, T,‘c) has not more than one zero in the An- 
terval (to, 0. Then for any z fairly close to t,, in that neighbourhood a vector q(*) can be 

found such that the function $(q ti), T, T) in the interval (to, T) vanishes only at the point % 
(see Eq.(2.12)). The function *(q(l), T, z) in that zero of z changes its sign from minus to 
plus. Equation (2.12) defines for fixed z on the sphere S an (n-2)-dimensional set, which 
for n>3 is nonempty. Xn that set a neighbourhood of the vector q(l) exists in which the 
function $(q, T,s) in the interval (to, T) has a zero at the fixed point r and only at that 
point. Obviously the control (1.5) corresponds to the vectors q from that neighbourhood with 
one instant z of change of sign, and on the boundary I’(&, T) a corner point that is conical. 
Taking the values of T from to to t, + (2, where f e [is a fairly small number, we obtain a set 
of such corner points which can be called the edge /7/. The edge constructed above begins at 
the conical corner point (when z -to). Unlike the conical corner points which represent 
zero dimensional sets in space X, the edgesare one-dimensional sets of corner points. 

Definition 3. We shall call the corner point of the boundary I’(t,, T) which corresponds 
to an (n- 2)-dimensional subset of the sphere S, a point of one-dimensional edge. 

The above reasoning contains the proof of the following theorem. 

Theorem 4. For every to a T' exzsts such that the boundary r(b,, T) has two conical 
Corner points on the boundary TE(&, T’), and from each such point at least one edge begins. 

The following theorem can be proved. 

Theorem 5. For any t, a T’ exists such that for every TE(~,, T’) there are on the bound- 
ary I'(&,, 2') two conical corner points that are connected to one another by two edges. 

The edges connect Conical corner points when for each r~ (to, T) a vector q exists such 

that the function +(q, I",%) = 0 at only one point of the interval (t,, T). To obtain edges it 
is necessary to substitute into Bq.(1.2) all possible functions u(t) that in one time interval 
have a value 1 and in another -1. The unique instant r when the sign of these functions 

changes encompasses all values from the interval (t.9 T). 
In third-order systems the singularities of the boundary I’(&,, T) are exhausted by the 
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presence of conical corner points and one-dimensional edges fFig.2). aen f T-&i is small 
t&e attainment region in third-or&r systems is like a plum stone. This similarity is maint- 
ained for all T - t,, if (1.1) is a stationary system and all three eigenvalues of the matrix 
A are real f71. 

In fourth-order systems the boundary I'(&,, T) may have two-dimensional "edges", whose 
paints oorresponc? to the one-dimensional subset of the sphere S, and n-th order systems may 
have up to (n - 2)-dimensional edges, whose points correspond to a one-dimensional subset of 
the sphere s. 

Thewm 6. For any t, a IT' exists such that the boundary r&T) has for any TE(&, 7") 
two conical corner points and, also, corner points that form one-# two-, three-, and . . . . fn - 
2) -dimensional edges. 

Let us prove this theorem. Under condition (1.7) a vector r;" exists (for a given Tthis 
vector is used to determine the vector $ m e-*(T) 5") such that 

The quantity T can be selected to be so close to &that for the vector q" *8-'(T) 6" for 
all ZE &,T) the inequality +(n*, T, %)> 0 holds. It can be ascertained that on the sphere 
s a neigbb&rhood of the vector $ex&ts, for each point of which the function q(n, T, T) has 
in the Interval f&T) not mare that k zeros. Then for any set of numbers z,,...,g falsly 
close to t,, a vector $*I can he found in that neighbourho&t such that the function 9 (@, T,2) 
has inthe interval &, T) exactly k zeros of z,, . . ..Q. 

*I(*) e (q e-g {TV) b {z*) = 0 (i = i, . . ., k} (2.17) 

Equation (2.17) defines far fixed %I,...q'ik on iAm sphere S an (e-k- if-d&mensional 
set. In that set a neigbbourhood of the vector $f) exists where the function *(n,T,O) van- 
ishes in the interval @,,T) at fixed points z,, ., .,%a and only at these pints. The con- 
trol (1.5) obviously corresponds to the vectors in that neighbourhood, with switching instanc- 
638 2~~ . I ., %k, and at the boundary I'(&,, T) a corner point correspmds to it. Taking the 
instants TX,.. .,s,, we obtain a set of corner points that form a k-dimensional edge. The 
number k may have any value from unity to n - 2. This proves Theorem 6, which generalizes 
Theorems J. and 4. 

Theorem 6 was proved in /7/ for all T-- t, in the case when the matrices A and 6 are 
constant and all eigenvalues of the matrix A are real. 

3. Extraal points of the boundary. hle introduce the foILowing definition. 

Definition 4. The point (vector) z~ I'&, T) Is calted extremalr if on the boundaryr(t,, T) 
it has a neighbourhood all the points of which distant fram the origin of coordinates by not 
more inot less) than the point x. 

For point XG rjt,, T) to be extremal, the existence of a supporting hyperplane n(q) is 
necessary. That hyperplane passes through the point x such that 

Tt =s*lifsll (3.1) 

where [jsl/ is the norm of the vector xr and the asterisk denotes Wansposition.From Eqs.Cl.8) 
and (3.1) it follows that the extremal vectors s(T) satisfy the condition 

Equation (3-2) may be treated as follows: the extremal vector xG r (t,, T) is an eigen- 
vector of transformation (1.8) or (1.91 (apart from the normalizing multiplierf. 

If a conical corner point x=r (tat T), is extras&, it is distant from the origin of co- 
ordinates by not less than the neighbouring points; this follows from the convexity of the 
attainment region @(tat T), Nence we shall consider the conical corner point whose distance 
fram the origfn of coordinates is a maximum to be extremal. Fox the conical corner point 
SE JYfE,, T) to be the maximum distance from the origin of coordinates it is necessary and 

sufficient that it is possible to draw through that point x a suppartinq hyperplane orthogonal 
to the vector x. 

Thenrem 7. For the conical corner point of boundary I'(&, T) to be at the maximumdistance 
from the origin of coordinates is necessary that 
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sgn (T - to) j b* (r) (W’ fT))‘8’ fq e (it) e-1 (E) 6 g) d% > 0 
t. 

and sufficient that 

sgn(T -, j b*(2)(0-1(t))+8+(T)0(T)8-1~ b(Q dr> 0 (3.3) 

To prove the theorem it is sufficient to recall Lenm~as 3 (Eq.(2.11)) and 4, and Eq.f3.1): 
According to Leimna 4, the strict inequality (3.3) is the sufficient condition for conical 

corner points to be present. Iience by Theorem 7 the strict inequality (3.3) is the sufficient 
condition for conical corner points that are at the maximum distance from the origin of co- 
ordinates to exist on the boundary r (&l, T) * 

For constant matrices A and b, inequality (3.3) takes the form 

T-t. 

agn(T--to) s b*c-eabds>O, vf,~@,T-to) 

The integrand function in (3.3)' (let us denote it by W(T, E)) continuously depends on 
both of its arguments. Under condition (2.101 W(T,T)>O for all -ao<'~<m. Hence tak- 
ing into account Theorem 1, we obtain the following statement. 

Theorem 8. For every to a T' exists such that the boundary I'(&, T) for every TE (to, T') 
has two conical corner points that are at the maximum distance from the origin of coordinates. 
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